Using tensorflow
Workstation (Ubuntu 20.04, 5950X, rtx3080)
Install CUDA Toolkit
https://developer.nvidia.com/cuda-downloads
These were my options: * Operating System: Linux * Architecture: x86_64 * Distribution: Ubuntu 20.04 * Version: Latest (e.g., CUDA 12.0)
Add CUDA paths
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
Verify installation
nvcc --version
Install cuDNN
https://developer.nvidia.com/cudnn
Verify your options
Training and optimizing
Install requirements.txt
cd ~/jeteja_robot
pip install -r requirements.txt
Install python virtual environment
sudo apt install -y python3-venv
Create the virtual environment
python3 -m venv tf-gpu
source tf-gpu/bin/activate
Verify TensorFlow and GPU support
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
Jetson Orin Nano (Jetpack 6.1)
Install tensorflow
https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html
or for jp 6.1,
sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v61 tensorflow==2.16.1+nv24.08
You might need to downgrade your numpy.
To test, run the following for GPU support:
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices())"
Possible issue fixes
Set OpenMP Environment Variable
export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libgomp.so.1
Enable TensorFlow’s cuda_malloc_async Allocator
export TF_GPU_ALLOCATOR=cuda_malloc_async
Copying from jetson to powerful computer
Rsync
rsync -avz [source-username]@[source-IP]:/path/to/source/ /path/to/destination/